Donderdag 25 April 2013


MAKALAH KIMIA DASAR 2
ASAM BASA

BAB I

PENDAHULUAN

A. Latar Belakang

Asam dan basa merupakan sesuatu yang tidak asing lagi dalam kehidupan kita sehari. Banyak barang yang kita gunakan dalam kehidupan sehari-hari termasuk ke dalam contoh asam dan basa. Seperti buah-buahan, sayur-sayuran, bahan industri, dan lain sebagainya.

Asam dan basa ini juga merupakan materi yang wajib dipelajari bagi mahasiswa Teknik Lingkungan. Dalam pembelajarannya diberikan tugas dari dosen kepada mahasiswa-nya yang berupa makalah mengenai Asam dan Basa.

Oleh karena itu, makalah ini dibuat untuk memenuhi kewajiban dan amanah yang diberikan oleh dosen kepada mahasiswa-nya.

B. Tujuan dan Manfaat

Tujuan dari pembuatan makalah ini adalah agar mahasiswa mengetahui dan bisa mendalami ilmu mengenai asam dan basa.


 








BAB II
PEMBAHASAN

Sekitar tahun 1800, banyak kimiawan Prancis termasuk Antoine Lavoisier secara keliru berkeyakinan bahwa semua asam mengandung oksigen. Lavoisier mendefinisikan asam sebagai zat mengandung oksigen karena pengetahuannya akan asam kuat hanya terbatas pada asam-asam okso dan karena is tidak mengetahui komposisi sesungguhnya dari asamasam halida, HCI, HBr, dan HI.

 Lavoisier-lah yang memberi nama oksigen dari dua kata bahasa Yunani yaitu oxus (asam) dan gennan (menghasilkan) yang berarti “penghasil/pembentuk asam”. Setelah unsur klorin, bromin, dan iodin teridentifikasi dan ketiadaan oksigen dalam asam – asam halida ditemukan oleh Sir Humphry Davy pada tahun 1810, definisi oleh Lavoisier tersebut kemudian ditinggalkan. Kimiawan Inggris pada waktu itu, termasuk Humphry Davy berkeyakinan bahwa semua asam mengandung hidrogen. Setelah itu pada tahun 1884, ahli kimia Swedia yang bernama Svante August Arrhenius dengan menggunakan landasan ini, mengemukakan teori ion dan kemudian merumuskan pengertian asam.
Basa dapat dikatakan sebagai lawan dari asam. Jika asam dicampur dengan basa, maka kedua zat itu saling menetralkan sehingga sifat asam dan basa dihilangkan.

A. TEORI ASAM-BASA

1. Teori Asam-Basa Arrhenius

Menurut Arrhenius pada tahun 1903, asam adalah zat yang dalam air dapat menghasilkan ion hidrogen (atau ion hidronium, H3O+) sehingga dapat meningkatkan konsentrasi ion hidronium (H3O+).

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiMaJbQ75SQhbXUJaavcBDP6QDWIBeoXAT9yMsdETxwQbVMpLNjMgV_l87OtXSbMSc5nku5kLzIUrGMu3esg8Wn1OBjrBYkCbS21ERsZgyQlsBd0weZZOn_kM3xfckQecljeVARdM8L7v8/s320/ASAM+BASA+1.png


Basa  adalah zat yang dalam air dapat menghasilkan ion hidroksida sehingga dapat meningkatkan konsentrasi ion hidroksida.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj00xMxcF7A6vUKgbfIkF9VA-l3GlyrVGnL8a0qqMrP6npLc3kK9lz1xZ_bxAKBFyTPMQ9_Agg7rBrr2X732ig2_T4xb-4kMOGBJ3fsaX2ZrxqVMjoy1yGEk_Sf5vyOTPYkmdA9mOTqcpY/s320/ASAM+BASA+2.png


Reaksi keseluruhannya :

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhk7Tg-Zba9O5j4dZ-RNN1r0LVhaxieFaYzDENUAgP-u8AvRUN3LzyAIpVTbsPTsGTIJNuXfsfkG4k3W4M-zwJSE173Rt3YVJy7UBd9buDHAHRl8hYrgE9J2TpZv_0LetHtTqE2jNfOKRA/s320/ASAM+BASA+3.png


Secara umum :


Konsep asam basa Arrhenius terbatas hanya pada larutan air, sehingga tidak dapat diterapkan pada larutan non-air, fasa gas dan fasa padatan dimana tidak ada H+ dan OH-.

2. Teori BrΦnsted dan Lowry
Di tahun 1923, kimiawan Denmark Johannes Nicolaus BrΦnsted (1879-1947) dan kimiawan Inggris Thomas Martin Lowry (1874-1936) secara independen mengusulkan teori asam basa baru, yang ternyata lebih umum.
asam: zat yang mendonorkan proton (H+) pada zat lain
basa : zat yang dapat menerima proton (H+) dari zat lain.
Berdasarkan teori ini, reaksi antara gas HCl dan NH3 dapat dijelaskan sebagai reaksi asam basa, yakni
HCl(g) + NH3(g) →NH4Cl(s)

simbol (g) dan (s) menyatakan zat berwujud gas dan padat. Hidrogen khlorida mendonorkan proton pada amonia dan berperan sebagai asam.
Menurut teori BrΦnsted dan Lowry, zat dapat berperan baik sebagai asam maupun basa. Bila zat tertentu lebih mudah melepas proton, zat ini akan berperan sebagai asam dan lawannya sebagai basa. Sebaliknya, bila zuatu zat lebih mudah menerima proton, zat ini akan berperan sebagai basa. Dalam suatu larutan asam dalam air, air berperan sebagai basa.
HCl + H2O → Cl + H3O+
asam1+basa 2 → basa konjugat1+asam konjugat2
Basa konjugat dari suatu asam adalah spesi yang terbentuk ketika satu proton pindah dari asam tersebut. Asam konjugat dari suatu basa adalah spesi yang terbentuk ketika satu proton ditambahkan ke basa tersebut.
Dalam reaksi di atas, perbedaan antara HCl dan Cl– adalah sebuah proton, dan perubahan antar keduanya adalah reversibel. Hubungan seperti ini disebut hubungan konjugat, dan pasangan HCl dan Cl– juga disebut sebagai pasangan asam-basa konjugat.
Larutan dalam air ion CO3 2– bersifat basa. Dalam reaksi antara ion CO32– dan H2O, yang pertama berperan sebagai basa dan yang kedua sebagai asam dan keduanya membentuk pasangan asam basa konjugat.
CH2O + CO32– → OH + HCO3–
asam1+basa 2 → basa konjugat1+asam konjugat2
Zat disebut sebagai amfoter bila zat ini dapat berperan sebagai asam atau basa. Air adalah zat amfoter. Reaksi antara dua molekul air menghasilkan ion hidronium dan ion hidroksida
adalah contoh reaksi zat amfoter
H2O + H2O → OH + H3O+
asam1+basa 2 → basa konjugat1+asam konjugat2

B.  Kekuatan Asam dan Basa
Pada dasarnya skala/tingkat keasaman suatu larutan bergantung pada konsentrasi ion H+ dalam larutan. Makin besar konsentrasi ion H+ makin asam larutan tersebut. Umumnya konsentrasi ion H+ sangat kecil, sehingga untuk menyederhanakan penulisan, seorang kimiawan dari Denmark bernama Sorrensen mengusulkan konsep pH untuk menyatakan konsentrasi ion H+. Nilai pH sama dengan negatif logaritma konsentrasi ion H+ dan secara matematika diungkapkan dengan persamaan :

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhf_ERzOjNqrX_ipk_DL-dJcwYjVl1ohNYkkujoYQKBoVquumPpIKzkKnFzjTQJMpfKp74Zn80zqR2j3fB8lWvX_i4Y6w6DXPhLuHV2Vj9W1f5AyHlKNahmtlOC7I56TWbVDmRjslA-F9Y/s320/ASAM+BASA+5.png
 1. Derajat keasaman (pH) 

Untuk air murni pada temperatur 25 °C :
[H+] = [OH-] = 10-7 mol/L
Sehingga pH air murni = – log 10‑7 = 7.
Jika pH = 7, maka  larutan bersifat netral
Jika pH < 7, maka larutan bersifat asam
Jika pH > 7, maka larutan bersifat basa
Pada temperatur kamar : pKw = pH + pOH = 14





2. Asam Kuat 

Disebut asam kuat karena zat terlarut dalam larutan ini mengion seluruhnya (α = 1). Untuk menyatakan derajat  keasamannya, dapat ditentukan langsung dari konsentrasi asamnya dengan melihat valensinya.

3. Asam Lemah 

Disebut asam lemah karena zat terlarut dalam larutan ini tidak mengion seluruhnya,    α ≠ 1, (0 < α < 1). Penentuan besarnya derajat keasaman tidak dapat ditentukan langsung dari konsentrasi asam lemahnya (seperti halnya asam kuat). Penghitungan derajat keasaman dilakukan dengan menghitung konsentrasi [H+] terlebih dahulu dengan rumus :

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjQHJl3G2n-ajPIOmra-gNesYhkv_TzKxrxaTxmIVCYl1ytuLA2MQBo_cgrALt0gaiv1L1wlqZesYGJSylCnm8dJg8nJKYiNXFxjV7zZ_9nj1sg3lCy-QURYUpNOoQvbbeiww5ItvoMSQs/s320/ASAM+BASA+7.png


di mana, Ca = konsentrasi asam lemah
Ka = tetapan ionisasi asam lemah

4. Basa Kuat 

Disebut basa kuat karena zat terlarut dalam larutan ini mengion seluruhnya (α = 1). Pada penentuan derajat keasaman dari larutan basa terlebih dulu dihitung nilai pOH dari konsentrasi basanya.

5. Basa lemah 

Disebut basa lemah karena zat terlarut dalam larutan ini tidak mengion seluruhnya,    α  ≠ 1, (0 <  α < 1). Penentuan besarnya konsentrasi OH- tidak dapat ditentukan langsung dari konsentrasi basa lemahnya (seperti halnya basa kuat), akan tetapi harus dihitung dengan menggunakan rumus : 

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj_w9EEcR4JCyaLSyOKlxCqSxKUEGnK1-IegSseCZDN14_ONOAK9Qbr-2xTW7R6EklhLDpRhUBxvObMTU_9qiMcYbHuqO0Fx4UllyAa5y2EldZtpL7dv8ysQ9QvwmDPwTxgDsURzyOX1HM/s320/ASAM+BASA+8.png

di mana, Cb = konsentrasi basa lemah
Kb = tetapan ionisasi basa lemah

C. Asam dan Basa dapat Dibedakan dari Rasa dan Sentuhan 

Asam mempunyai rasa masam. Rasa masam yang kita kenal misalnya pada beberapa jenis makanan seperti jeruk, jus lemon, tomat, cuka, minuman ringan (soft drink) dan beberapa produk seperti sabun yang mengandung belerang dan air accu (Gambar 13). Sebaliknya, basa mempunyai rasa pahit. Tetapi, rasa sebaiknya jangan digunakan untuk menguji adanya asam dan basa, karena beberapa asam dan basa dapat mengakibatkan luka bakar dan merusak jaringan.

Seperti halnya rasa, sentuhan bukan merupakan cara yang aman untuk menguji basa, meskipun kita  telah terbiasa dengan sentuhan sabun saat mandi atau mencuci. Basa (seperti sabun) bersifat alkali, bereaksi dengan protein di dalam kulit sehingga sel-sel kulit akan mengalami pergantian. Reaksi ini merupakan bagian dari rasa licin yang diberikan oleh sabun, yang sama halnya dengan proses pembersihan dari produk pembersih saluran.










D. Asam dan Basa dalam Kehidupan

Beberapa Asam dan Basa Yang Telah Dikenal

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj8iItGzhn1jJF8TvumQwAHrLOhA5Adj6uI0E8wSAr9CJ_JUMNex9nfBFT-LaXLx9xGhepWDvmN60scZXElj3H65zJvMzQF6YtNk2i0dl_8l64xyEDdQvOp9ql1odD5Z3-PrO9kDiRt_w0/s320/ASAM+BASA+9.png

Asam merupakan kebutuhan industri yang vital. Empat macam asam yang paling penting dalam industri adalah asam sulfat, asam fosfat, asam nitrat dan asam klorida. Asam sulfat (H2SO4) merupakan cairan kental menyerupai oli. Umumnya asam sulfat digunakan dalam pembuatan pupuk, pengilangan minyak, pabrik baja, pabrik plastik, obat-obatan, pewarna, dan untuk pembuatan asam lainnya. Asam fosfat (H3PO4) digunakan untuk pembuatan pupuk dan deterjen. Namun, sangat  disayangkan bahwa fosfat dapat menyebabkan masalah pencemaran di danau-danau dan aliran sungai.
Asam nitrat (HNO3) banyak digunakan untuk pembuatan bahan peledak dan pupuk. Asam nitrat pekat merupakan cairan tidak berwarna yang dapat mengakibatkan luka bakar pada kulit manusia. Asam klorida (HCl) adalah gas yang tidak berwarna yang dilarutkan dalam air. Asap HCl  dan ion-ionnya yang terbentuk dalam larutan, keduanya berbahaya bagi jaringan tubuh manusia.
Dalam keadaan murni, pada umumnya basa berupa kristal padat. Beberapa produk rumah tangga yang mengandung basa, antara lain deodorant, antasid, dan sabun. Basa yang digunakan secara luas adalah kalsium hidroksida, Ca(OH)2 yang umumnya disebut soda kaustik suatu basa yang berupa  tepung kristal putih yang mudah larut dalam air. Basa yang paling banyak digunakan adalah amoniak. Amoniak merupakan gas tidak berwarna dengan bau yang sangat menyengat,  sehingga sangat mengganggu saluran pernafasan dan paru-paru bila gas terhirup. Amoniak digunakan sebagai pupuk, serta bahan pembuatan rayon, nilon dan asam nitrat.


 
BAB III
KESIMPULAN

Asam dalam pelajaran kimia adalah senyawa kimia yang bila dilarutkan dalam air akan menghasilkan larutan dengan pH lebih kecil dari 7. Dalam definisi modern, asam adalah suatu zat yang dapat memberi proton (ion H+) kepada zat lain (yang disebut basa), atau dapat menerima pasangan elektron bebas dari suatu basa. Asam terbagi atas dua maca yaitu asam kuat dan asam lemah. Asam mempunyai rasa asam dan bersifat korosif.
Basa adalah senyawa kimia yang menyerap ion hydronium ketika dilarutkan dalam air. Basa memiliki pH lebih besar dari 7. Seperti hal-nya asam, basa juga terbagi dua macam yaitu basa kuat dan basa lemah.
Basa mempunyai rasa pahit dan merusak kulit, terasa licin seperti sabun bila terkena kulit. Dan dapat menetralkan asam.
Jika pH = 7, maka  larutan bersifat netral. Jika pH < 7, maka larutan bersifat asam. Jika pH > 7, maka larutan bersifat basa.















DAFTAR PUSTAKA

http://www.chem-is-try.org/materi_kimia/kimia-smk/kelas_xi/kekuatan-asam-dan-basa/
http://www.chem-is-try.org/materi_kimia/kimia_dasar/asam_dan_basa/konsep-ph-poh-dan-pkw/
http://www.smkn1bandung.com/modul/adaptip/adaptif_kimia/larutan_asam_dan_basa.pdf




















Hubungan antara teori Bronsted-Lowry dan teori Arrhenius
Teori Bronsted-Lowry tidak berlawanan dengan teori Arrhenius – Teori Bronsted-Lowry merupakan perluasan teori Arrhenius.
Ion hidroksida tetap berlaku sebagai basa karena ion hidroksida menerima ion hidrogen dari asam dan membentuk air.
Asam menghasilkan ion hidrogen dalam larutan karena asam bereaksi dengan molekul air melalui pemberian sebuah proton pada molekul air.
Ketika gas hidrogen klorida dilarutkan dalam air untuk menghasilkan asam hidroklorida, molekul hidrogen klorida memberikan sebuah proton (sebuah ion hidrogen) ke molekul air. Ikatan koordinasi (kovalen dativ) terbentuk antara satu pasangan mandiri pada oksigen dan hidrogen dari HCl. Menghasilkan ion hidroksonium, H3O+.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/h2ohcldiag.gif
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/h2ohcleq.gif
Ketika asam yang terdapat dalam larutan bereaksi dengan basa, yang berfungsi sebagai asam sebenarnya adalah ion hidroksonium. Sebagai contoh, proton ditransferkan dari ion hidroksonium ke ion hidroksida untuk mendapatkan air.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/neutralise2.gif
Tampilan elektron terluar, tetapi mengabaikan elektron pada bagian yang lebih dalam:
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/h3oohdiag.gif
Adalah sesuatu hal yang penting untuk mengatakan bahwa meskipun anda berbicara tentang ion hidrogen dalam suatu larutan, H+(aq), sebenarnya anda sedang membicarakan ion hidroksonium.

Permasalahan hidrogen klorida / amonia
Hal ini bukanlah suatu masalah yang berlarut-larut dengan menggunakan teori Bronsted-Lowry. Apakah anda sedang membicarakan mengenai reaksi pada keadaan larutan ataupun pada keadaan gas, amonia adalah basa karena amonia menerima sebuah proton (sebuah ion hidrogen). Hidrogen menjadi tertarik ke pasangan mandiri pada nitrogen yang terdapat pada amonia melalui sebuah ikatan koordinasi.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/ammonium.gif
Jika amonia berada dalam larutan, amonia menerima sebuah proton dari ion hidroksonium:
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/nh3h3oeqn.gif
Jika reaksi terjadi pada keadaan gas, amonia menerima sebuah proton secara langsung dari hidrogen klorida:
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/nh3hclg2.gif
Cara yang lain, amonia berlaku sebagai basa melalui penerimaan sebuah ion hidrogen dari asam.




Pasangan konjugasi
Ketika hidrogen klorida dilarutkan dalam air, hampir 100% hidrogen klorida bereaksi dengan air menghasilkan ion hidroksonium dan ion klorida. Hidrogen klorida adalah asam kuat, dan kita cenderung menuliskannya dalam reaksi satu arah:
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/h2ohcleq.gif
Pada faktanya, reaksi antara HCl dan air adalah reversibel, tetapi hanya sampai pada tingkatan yang sangat kecil. Supaya menjadi bentuk yang lebih umum, asam dituliskan dengan HA, dan reaksi berlangsung reversibel.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/hah2oeqm.gif
Perhatikan reaksi ke arah depan:
  • HA adalah asam karena HA mendonasikan sebuah proton (ion hidrogen) ke air.
  • Air adalah basa karena air menerima sebuah proton dari HA.
Akan tetapi ada juga reaksi kebalikan antara ion hidroksonium dan ion A-:
  • H3O+ adalah asam karena H3O+ mendonasikan sebuah proton (ion hidrogen) ke ion A-.
  • Ion A- adalah basa karena A- menerima sebuah proton dari H3O+.
Reaksi reversibel mengandung dua asam dan dua basa. Kita dapat menganggapnya berpasangan, yang disebut pasangan konjugasi.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/conjugate1.gif
Ketika asam, HA, kehilangan sebuah proton asam tersebut membentuk sebuah basa A-. Ketika sebuah basa, A-, menerima kembali sebuah proton, basa tersebut kembali berubah bentuk menjadi asam, HA. Keduanya adalah pasangan konjugasi.
Anggota pasangan konjugasi berbeda antara satu dengan yang lain melalui kehadiran atau ketidakhadiran ion hidrogen yang dapat ditransferkan.
Jika anda berfikir mengenai HA sebagai asam, maka A- adalah sebagai basa konjugasinya.
Jika anda memperlakukan A- sebagai basa, maka HA adalah sebagai asam konjugasinya.
Air dan ion hidroksonium juga merupakan pasangan konjugasi. Memperlakukan air sebagai basa, ion hidroksonium adalah asam konjugasinya karena ion hidroksonium memiliki kelebihan ion hidrogen yang dapat diberikan lagi.
Memperlakukan ion hidroksonium sebagai asam, maka air adalah sebagai basa konjugasinya. Air dapat menerima kembali ion hidrogen untuk membentuk kembali ion hidroksonium.
Contoh yang kedua mengenai pasangan konjugasi
Berikut ini adalah reaksi antara amonia dan air yang telah kita lihat sebelumnya:
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/conjugate2.gif
Hal pertama yang harus diperhatikan adalah forward reaction terlebih dahulu. Amonia adalah basa karena amonia menerima ion hidrogen dari air. Ion amonium adalah asam konjugasinya – ion amonium dapat melepaskan kembali ion hidrogen tersebut untuk membentuk kembali amonia.
Air berlaku sebagai asam, dan basa konjugasinya adalah ion hidroksida. Ion hidroksida dapat menerima ion hidrogen untuk membentuk air kembali.
Perhatikanlah hal ini pada tinjauan yang lain, ion amonium adalah asam, dan amonia adalah basa konjugasinya. Ion hidroksida adalah basa dan air adalah asam konjugasinya.
Zat amfoter
Anda mungkin memperhatikan (atau bahkan mungkin juga tidak memperhatikan!) bahwa salah satu dari dua contoh di atas, air berperilaku sebagai basa, tetapi di lain pihak air berperilaku sebagai asam.
Suatu zat yang dapat berperilaku baik sebagai asam atau sebagai basa digambarkan sebagai amfoter.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/amphoteric.gif



Teori asam dan basa Lewis
Teori ini memperluas pemahaman anda mengenai asam dan basa.
  • Asam adalah akseptor pasangan elektron.
  • Basa adalah donor pasangan elektron.
Hubungan antara teori Lewis dan teori Bronsted-Lowry
Basa Lewis
Hal yang paling mudah untuk melihat hubungan tersebut adalah dengan meninjau dengan tepat mengenai basa Bronsted-Lowry ketika basa Bronsted-Lowry menerima ion hidrogen. Tiga basa Bronsted-Lowry dapat kita lihat pada ion hidroksida, amonia dan air, dan ketianya bersifat khas.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/lewisbases.gif
Teori Bronsted-Lowry mengatakan bahwa ketiganya berperilaku sebagai basa karena ketiganya bergabung dengan ion hidrogen. Alasan ketiganya bergabung dengan ion hidrigen adalah karena ketiganya memiliki pasangan elektron mandiri – seperti yang dikatakan oleh Teori Lewis. Keduanya konsisten.
Jadi bagaimana Teori Lewis merupakan suatu tambahan pada konsep basa? Saat ini belum – hal ini akan terlihat ketika kita meninjaunya dalam sudut pandang yang berbeda.
Tetapi bagaimana dengan reaksi yang sama mengenai amonia dan air, sebagai pada teori Lewis, tiap reaksi yang menggunakan amonia dan air menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi yang akan terhitung selama keduanya berperilaku sebagai basa.
Berikut ini reaksi yang akan anda temukan pada halaman yang berhubungan dengan ikatan koordinasi. Amonia bereaksi dengan BF3 melalui penggunaan pasangan elektron mandiri yang dimilikinya untuk membentuk ikatan koordinasi dengan orbital kosong pada boron.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/nh3bf3diag.gif
Sepanjang menyangkut amonia, amonia menjadi sama persis seperti ketika amonia bereaksi dengan sebuah ion hidrogen – amonia menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi. Jika anda memperlakukannya sebagai basa pada suatu kasus, hal ini akan berlaku juga pada kasus yang lain.
Asam Lewis
Asam Lewis adalah akseptor pasangan elektron. Pada contoh sebelumnya, BF3 berperilaku sebagai asam Lewis melalui penerimaan pasangan elektron mandiri milik nitrogen. Pada teori Bronsted-Lowry, BF3 tidak sedikitpun disinggung menganai keasamannya.
Inilah tambahan mengenai istilah asam dari pengertian yang sudah biasa digunakan.
Bagaimana dengan reaksi asam basa yang lebih pasti – seperti, sebagai contoh, reaksi antara amonia dan gas hidrogen klorida?
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/nh3hclg2.gif
Pastinya adalah penerimaan pasangan elektron mandiri pada nitrogen. Buku teks sering kali menuliskan hal ini seperti jika amonia mendonasikan pasangan elektron mandiri yang dimilikinya pada ion hidrogen – proton sederhana dengan tidak adanya elektron disekelilingnya.
Ini adalah sesuatu hal yang menyesatkan! anda tidak selalu memperoleh ion hidrogen yang bebas pada sistem kimia. Ion hidogen sangat reaktif dan selalu tertarik pada yang lain. Tidak terdapat ion hidrogen yang tidak bergabung dalam HCl.
Tidak terdapat orbital kosong pada HCl yang dapat menerima pasangan elektron. Mengapa, kemudian, HCl adalah suatu asam Lewis?
Klor lebih elektronegatif dibandingkan dengan hidrogen, dan hal ini berarti bahwa hidrogen klorida akan menjadi molekul polar. Elektron pada ikatan hidrogen-klor akan tertarik ke sisi klor, menghasilkan hidrogen yang bersifat sedikit positif dan klor sedikit negatif.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/hclpolar.gif
Pasangan elektron mandiri pada nitrogen yang terdapat pada molekul amonia tertarik ke arah atom hidrogen yang sedikit positif pada HCl. Setelah pasangan elektron mandiri milik nitrogen mendekat pada atom hidrogen, elektron pada ikatan hidrogen-klor tetap akan menolak ke arah klor.
Akhirnya, ikatan koordinasi terbentuk antara nitrogen dan hidrogen, dan klor terputus keluar sebagai ion klorida.
Hal ini sangat baik ditunjukkan dengan notasi "panah melengkung" seperti yang sering digunakan dalam mekanisme reaksi organik.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/nh3hclmech.gif

Geen opmerkings nie: